Physics.Math.Code
الذهاب إلى القناة على Telegram
VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i
إظهار المزيد2025 عام في الأرقام

150 318
المشتركون
-3724 ساعات
-1747 أيام
-2 51230 أيام
جاري تحميل البيانات...
القنوات المماثلة
سحابة العلامات
الإشارات الواردة والصادرة
---
---
---
---
---
---
جذب المشتركين
ديسمبر '25
ديسمبر '25
+1 163
في 0 قنوات
نوفمبر '25
+11 831
في 1 قنوات
Get PRO
أكتوبر '25
+1 139
في 0 قنوات
Get PRO
سبتمبر '25
+1 896
في 0 قنوات
Get PRO
أغسطس '25
+1 994
في 0 قنوات
Get PRO
يوليو '25
+1 885
في 0 قنوات
Get PRO
يونيو '25
+1 182
في 0 قنوات
Get PRO
مايو '25
+1 133
في 0 قنوات
Get PRO
أبريل '25
+1 482
في 1 قنوات
Get PRO
مارس '25
+1 005
في 0 قنوات
Get PRO
فبراير '25
+1 178
في 0 قنوات
Get PRO
يناير '25
+1 542
في 0 قنوات
Get PRO
ديسمبر '24
+1 374
في 2 قنوات
Get PRO
نوفمبر '24
+1 487
في 0 قنوات
Get PRO
أكتوبر '24
+1 270
في 0 قنوات
Get PRO
سبتمبر '24
+1 281
في 0 قنوات
Get PRO
أغسطس '24
+642
في 0 قنوات
Get PRO
يوليو '24
+495
في 0 قنوات
Get PRO
يونيو '24
+536
في 0 قنوات
Get PRO
مايو '24
+931
في 0 قنوات
Get PRO
أبريل '24
+917
في 0 قنوات
Get PRO
مارس '24
+982
في 0 قنوات
Get PRO
فبراير '24
+1 177
في 0 قنوات
Get PRO
يناير '24
+1 088
في 0 قنوات
Get PRO
ديسمبر '23
+739
في 1 قنوات
Get PRO
نوفمبر '23
+1 329
في 4 قنوات
Get PRO
أكتوبر '23
+1 333
في 0 قنوات
Get PRO
سبتمبر '23
+2 130
في 3 قنوات
Get PRO
أغسطس '23
+812
في 1 قنوات
Get PRO
يوليو '23
+290
في 7 قنوات
Get PRO
يونيو '23
+8
في 1 قنوات
Get PRO
مايو '23
+1 334
في 1 قنوات
Get PRO
أبريل '23
+751
في 0 قنوات
Get PRO
مارس '23
+94
في 0 قنوات
Get PRO
فبراير '23
+15 403
في 0 قنوات
Get PRO
يناير '230
في 0 قنوات
Get PRO
ديسمبر '220
في 0 قنوات
Get PRO
نوفمبر '220
في 0 قنوات
Get PRO
أكتوبر '22
+798
في 0 قنوات
Get PRO
سبتمبر '22
+4 315
في 0 قنوات
Get PRO
أغسطس '22
+3 868
في 0 قنوات
Get PRO
يوليو '22
+4 241
في 0 قنوات
Get PRO
يونيو '22
+5 139
في 0 قنوات
Get PRO
مايو '22
+5 313
في 0 قنوات
Get PRO
أبريل '22
+6 363
في 0 قنوات
Get PRO
مارس '22
+6 759
في 0 قنوات
Get PRO
فبراير '22
+3 782
في 0 قنوات
Get PRO
يناير '22
+67 862
في 0 قنوات
| التاريخ | نمو المشتركين | الإشارات | القنوات | |
| 26 ديسمبر | +39 | |||
| 25 ديسمبر | +27 | |||
| 24 ديسمبر | +4 | |||
| 23 ديسمبر | +13 | |||
| 22 ديسمبر | +21 | |||
| 21 ديسمبر | +19 | |||
| 20 ديسمبر | +8 | |||
| 19 ديسمبر | +61 | |||
| 18 ديسمبر | +5 | |||
| 17 ديسمبر | +7 | |||
| 16 ديسمبر | +7 | |||
| 15 ديسمبر | +19 | |||
| 14 ديسمبر | +6 | |||
| 13 ديسمبر | +21 | |||
| 12 ديسمبر | +22 | |||
| 11 ديسمبر | +18 | |||
| 10 ديسمبر | +6 | |||
| 09 ديسمبر | 0 | |||
| 08 ديسمبر | +18 | |||
| 07 ديسمبر | +8 | |||
| 06 ديسمبر | +13 | |||
| 05 ديسمبر | +7 | |||
| 04 ديسمبر | +5 | |||
| 03 ديسمبر | 0 | |||
| 02 ديسمبر | 0 | |||
| 01 ديسمبر | +809 |
منشورات القناة
01:00
🤪 Сверхсильные магнитные поля: от лаборатории до реальной жизни
Магнитные поля, превышающие земное (≈ 0.5 Гаусса) или поле простого ферритового магнита, давно перестали быть лабораторным феноменом. Речь о полях от 1 Тесла (10 000 Гаусс) и выше, вплоть до рекордных импульсных значений в тысячи Тесла. Рассмотрим малоизвестный применения сверхсильных полей в реальности, которая нас окружает.
▫️ 1. Чистота кремния для микроэлектроники. При выращивании монокристаллов кремния методом Чохральского сверхпроводящие магниты (порядка 0.5 Тл) подавляют конвекционные потоки в расплаве. Это позволяет получать сверхчистые и однородные кристаллы, что критически важно для производства современных процессоров и силовой электроники.
▫️ 2. Борьба с опухолями. Технология «Магнитная гипертермия». В опухоль вводятся наночастицы оксида железа. Пациента помещают в переменное поле высокой частоты (при индукции ~0.01-0.1 Тл). Частицы разогреваются, выборочно уничтожая раковые клетки, минимально затрагивая здоровые ткани.
▫️ 3. Обработка воды. Мощные неодимовые магниты (поле ~0.1-0.2 Тл на поверхности) устанавливаются на трубопроводы с жесткой водой. Хотя физический механизм до конца не ясен (споры идут о влиянии на образование кристаллов карбоната кальция), на практике это снижает образование накипи в промышленных котлах и теплообменниках без химических реагентов.
▫️ 4. Аэродинамические трубы с магнитной левитацией. Для моделирования гиперзвуковых полетов (числа Маха > 5) используют ударные трубы, где диамагнитные модели (например, с графитовым покрытием) левитируют в поле ~15-20 Тл. Это позволяет изучать обтекание без механических креплений, искажающих поток.
⚛️ Фронт науки: последние достижения
▪️Рекордные статические поля: В Национальной лаборатории сильных магнитных полей (США) в 2023 году достигнуто поле 45.5 Тл в гибридном магните (сверхпроводящая катушка + резистивная), что является абсолютным рекордом для непрерывного поля, доступного для пользователей.
▪️Импульсные поля и новая материя: В лабораториях (Россия, Германия, Япония) с помощью импульсных полей (сотни Тл, длительность микросекунды) открывают новые квантовые фазы вещества — экситонные изоляторы, новые типы спинового упорядочения. В 2022 году в поле ~90 Тл в селениде урана URu₂Si₂ была обнаружена необычная фаза «скрытого спинового порядка».
▪️Магниты для термояда: Успехи проекта ITER — создание и испытание D-образных сверхпроводящих катушек тороидального поля (до 11.8 Тл, энергия хранения 41 ГДж). Это инженерный триумф, открывающий путь к управляемому синтезу.
📝 Опыты для дома:
1. Диамагнитная левитация (опыт с графитом). Возьмите небольшой пиро- или кусочек высокоориентированного пиролитического графита (продается как «левитирующий графит») и несколько мощных неодимовых магнитов (например, N52) в виде дисков или плиток. Расположите магниты одноименными полюсами вверх, создав область с сильным градиентом поля. Аккуратно поместите графит над магнитами — он будет левитировать. Это доказательство диамагнетизма, что лежит в основе левитации лягушки в поле 16 Тл.
2. Разрушение магнитного поля (эффект Фарадея). Возьмите толстостенную медную или алюминиенюю трубку и мощный неодимовый магнит (в форме цилиндра или шара). Опустите магнит внутрь трубки — он будет падать замедленно, как в густой жидкости. Причина: изменяющийся магнитный поток наводит в стенках вихревые токи, поле которых по правилу Ленца противодействует падению магнита. Наглядная демонстрация электромагнитного торможения и связи поля с движением.
3. Наблюдение гистерезиса (качественно). Понадобится два мощных магнита и стальной гвоздь или пластина (мягкая сталь). Намагнитите гвоздь с помощью магнита. Проверьте, притягивает ли он скрепки. Затем сильно ударьте гвоздь молотком или нагрейте его на газовой горелке докрасна и дайте остыть. Намагниченность резко уменьшится или исчезнет. Это демонстрация потери магнитного упорядочения при нагреве выше точки Кюри и влияния механических воздействий на доменную структуру. #физика #магнетизм #наука #эксперименты #физика #physics
💡 Physics.Math.Code // @physics_lib
6 687522
| 2 | 📝 Квадратура круга [1972] Центрнаучфильм
Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.
Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.
➰ О свойствах параболы ➿
Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib
#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry
💡 Physics.Math.Code // @physics_lib | 12 382 |
| 3 | Задача про аквариум: физика или просто геометрия?
Дано: закрытый прямоугольный аквариум размером 1×2×4 метра. Внутри плещется вода.
Сначала он стоял на самой большой грани 2×4 метра — и уровень воды был 25 см.
Затем его перевернули и поставили на грань 1×2 метра.
Вопрос: какой теперь стала глубина? Сможете в уме быстро посчитать новый уровень?
Кажется, что это уровень максимум средней школы, но без чертежа даже многие взрослые ошибаются именно в таких «простых» задачках.
Эту задачу мы нашли у коллег в канале «Зачем мне эта математика». Там правильно подметили: не торопитесь составлять сложные уравнения и вводить неизвестные. Если включить пространственное мышление, ответ находится гораздо быстрее.
Переходите по ссылке, чтобы сверить свой ответ (спойлер: он получается красивым). И подписывайтесь — там есть чем размять мозг, чтобы держать интеллект в тонусе.
Реклама. ООО «ФРОМ СКРЭТЧ», ИНН 9724205560, erid: 2VtzqvTgvjC | 11 660 |
| 4 | 🥺 Невидимые силы: странная физика кинематических скульптур
В прошлом посте была интересная задача про массы сегментов кинетических скульптур. Здесь продолжим рассматривать коллаборации физики и искусства.
▪️ Факт 1: Это не маятник. Или маятник?
Казалось бы, висит грузик на палочке — классический маятник. Но нет! У простого маятника вся масса сосредоточена в точке, а у кинетик-скульптуры она распределена по сложным рычагам. Такая система называется физическим маятником (или сложным). Его период колебаний зависит не от длины нити, а от момента инерции всей конструкции относительно точки подвеса. Художник, меняя форму и распределение масс, фактически «настраивает» частоту колебаний каждого «плеча», создавая не хаос, а визуально гармоничный танец.
▪️ Факт 2: Загадка «невозможного» движения.
Присмотритесь к сложным мобилям: легкое дуновение внизу может вызвать противоположное по направлению движение на верхнем ярусе. Это не оптическая иллюзия, а следствие закона сохранения момента импульса.
Представьте: вы раскручиваетесь на вращающемся стуле, разведя руки. Если резко прижмете руки — вы раскрутитесь быстрее. В изолированной системе (наш мобиль с низким трением) момент импульса L = I • ω должен сохраняться.
Нижний сегмент, начав движение (изменив свое ω), через систему связей передает этот импульс верхним ярусам, заставляя их компенсировать изменение. Получается связь рычагов, подчиненная строгому закону.
▪️ Факт 3: Точка невесомости
В идеально сбалансированном мобиле есть особая точка — центр масс всей системы. Она располагается ниже точки подвеса. Но что, если бы мы могли поднять её выше точки подвеса? Получилась бы неустойчивая точка равновесия , как перевернутый маятник. Легкий толчок — и конструкция не вернется в исходное положение, а перевернется. Такие «неустойчивые» мобили тоже существуют — их движение непредсказуемо и хаотично, это вызов для художника-физика.
▪️Факт 4: Битва с трением — квантовый предел.
Идея кинетической скульптуры — вечное движение. Но его убивает трение. Современные создатели идут на хитрости: сверхлегкие материалы (карбон), магнитные подвесы (левитация) или специальные подшипники. Но есть теоретический предел. Даже в идеальном вакууме при абсолютном нуле колебания затухли бы из-за квантовых флуктуаций и излучения гравитационных волн (хоть и за время, много порядков превышающее возраст Вселенной). Наш мобиль — в плену у фундаментальных законов мироздания.
Кинетическая скульптура — это лаборатория по динамике:
1. Статика (баланс моментов)
2. Гармонические колебания (физический маятник)
3. Сохранение момента импульса (взаимодействие сегментов)
4. Борьба с энтропией (потеря энергии на трение)
Она напоминает нам, что красота — это не только форма, но и чистая функция, описываемая лаконичными уравнениями. Это физика, которую можно не только понять, но и увидеть. Самые сложные мобили рассчитываются с помощью алгоритмов, решающих системы уравнений равновесия для каждого узла. Так что следующему Колдеру, возможно, понадобится знать не только физику, но и какой-нибудь язык программирования. #физика #механика #искусство #наука #кинематика #скульптура #равновесие #маятник #physics #science
💡 Physics.Math.Code // @physics_lib | 11 859 |
| 5 | 😖 Задача для наших инженеров: Как должны относиться массы сегментов на кинетических скульптурах, чтобы движения были плавные?
Рассмотрим случай, когда искусство балансирует на грани физики, геометрии и математики. Вы когда-нибудь видели скульптуру, которая оживает от легчайшего дуновения ветра? Не механизм с мотором, а изящную металлическую форму, начинающую плавно колебаться или завораживающе вращаться почти без трения. Это и есть кинематические скульптуры, где эстетика рождается из точного расчёта.
Часто такие фигуры основаны на правиле рычага. В основе лежит знакомое со школы равенство моментов сил: M₁ = M₂, или F₁ • L₁ = F₂ • L₂. В гравитационном поле сила — это вес сегмента (P = m•g). Поэтому для уравновешенного плеча условие превращается в: m₁ • L₁ = m₂ • L₂.
А как относятся массы? Всё гениально: массы сегментов обратно пропорциональны расстояниям от точки подвеса. Чем легче элемент — тем дальше его нужно отнести от центра, чтобы сбалансировать более тяжёлый, но расположенный ближе элемент. Но вопрос для подписчиков остается открытым: как выразить отношение mₙ₊₁ / mₙ ?
Ещё одна хитрость баланса — смещение центра масс в точку устойчивого положения с позиции механики — чуть ниже точки подвеса. Легчайший толчок воздуха выводит систему из этого положения. Сила тяжести, приложенная к смещённому центру масс, создаёт возвращающий момент силы — и скульптура начинает совершать медленные, затухающие колебания. Это превращает её в чувствительный анемометр. Основная фишка в том, что для запуска требуется лишь начальный импульс с минимальной энергией. А благодаря низкому трению в подвесе колебания длятся довольно долго. Физический итог: Кинематическая скульптура — это материализация статики (равновесие моментов) и динамики (затухающие колебания). Это осязаемая поэзия механики, где художник работает не только с формой, но и с невидимой силой тяжести. #физика #механика #искусство #наука #кинематика #скульптура #равновесие #маятник #physics #science
💡 Physics.Math.Code // @physics_lib | 12 492 |
| 6 | ➰ Торический узел — специальный вид узлов, лежащих на поверхности незаузлённого тора в ℝ³. Торическое зацепление — зацепление, лежащее на поверхности тора. Каждый торический узел определяется парой взаимно простых целых чисел p и q. Торическое зацепление возникает, когда p и q не взаимно просты. Торический узел является тривиальным тогда и только тогда, когда либо p, либо q равны 1 или -1. Простейшим нетривиальным примером является (2,3)-торический узел, известный также как трилистник.
Обычно используется соглашение, что (p, q) — торический узел вращается q раз вокруг оси тора и p раз вокруг оси вращения тора.
(p, q) — торический узел может быть задана параметризацией:
x = r⋅cos(p⋅φ)
y = r⋅sin(p⋅φ)
z = - sin(q⋅φ)
где r = cos(q⋅φ) + 2 и 0 < φ < 2π.
Он лежит на поверхности тора, задаваемого формулой (r - 2)² + z² = 1 (в цилиндрических координатах).
Параметризации могут быть другие, потому что узлы определены с точностью до непрерывной деформации. #gif #геометрия #физика #математика #math #geometry #алгебра #maths
💡 Physics.Math.Code // @physics_lib | 15 065 |
| 7 | 🌿 Папоротник Барнсли — это фрактал, названный в честь британского математика Майкла Барнсли, который впервые описал его в своей книге Фракталы повсюду. Папоротник является одним из основных примеров самоподобных множеств, т. е. это математически сгенерированный узор, который может быть воспроизведен при любом увеличении или уменьшении. Как и треугольник Серпинского, папоротник Барнсли показывает, как графически красивые структуры могут быть построены на основе повторяющегося использования математических формул с помощью компьютеров.
Хотя папоротник Барнсли теоретически можно нарисовать вручную с помощью ручки и миллиметровой бумаги, количество необходимых итераций исчисляется десятками тысяч, что делает использование компьютера практически обязательным. Множество различных компьютерных моделей папоротника Барнсли пользуются популярностью у современных математиков. Пока математика правильно запрограммирована с использованием матрицы констант Барнсли, будет получаться одна и та же форма папоротника.
👨🏻💻 Пробовали ли вы хоть раз программировать модели фракталов? Покажите в комментариях свои работы. #нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы
💡 Physics.Math.Code // @physics_lib | 16 618 |
| 8 | 🍑 Это персик или нектарин? Если вы запутались на кассе, нейросеть точно отличит сорта фруктов и овощей
Знаешь эту вечную проблему в супермаркете на весовой кассе? «Это что за сорт яблок?» — и начинается долгий поиск по базе. Для розничных сетей это не просто минута времени, а миллионы убытков. Но, кажется, решение пришло из мира open-source.
Инженер из Yandex Cloud, Сергей Нестерук, исследователи Сколтеха и ГУАП выкатили в открытый доступ крупнейший в мире датасет PackEat для компьютерного зрения в ритейле. И это не просто картинки из лаборатории.
Что внутри этого «монстра» данных?
▪️ 100+ тысяч фото, на которых больше 370 тысяч отдельных фруктов и овощей.
▪️ 34 вида и 65 сортов — от яблок и картошки до более экзотичных позиций.
▪️Все снимки сделаны в реальных магазинах, со всеми «прелестями»: товары в пакетах, навалом, с шумным фоном и частично перекрывают друг друга. То есть, условия — максимально реалистичные.
Зачем это все? Этот датасет — топливо для обучения нейросетей, которые смогут:
▫️ С ходу определять не только вид, но и сорт продукта.
▫️ Сегментировать каждый объект, даже если яблоки лежат горкой.
▫️ Автоматически считать количество единиц.
Исследования показывают, что точность таких моделей может достигать 92%, что в разы сокращает ошибки.
Где найти и использовать? Вся информация открыта:
1. Статья — в журнале Scientific Data.
2. Сам датасет изображений — на платформе Zenodo.
3. Код и примеры моделей — на Kaggle.
Это большой шаг к тому, чтобы «умные кассы» и системы учета перестали путать Аврору с Гренни Смит и начали реально экономить деньги бизнесу. А для разработчиков — отличный инструмент, чтобы создавать крутые retail-решения. #нейросети #компьютерноезрение #датасет #retailtech #ии #open_source | 14 917 |
| 9 | ❄️ Почему под техникой разводят костер? Что нужно прогреть? 🔥
В условиях работы на крайнем севере костёр под машиной — частый случай. Цель — не прогреть всю машину, а ожидить загустевшие технические жидкости и разогреть металлические узлы до температур, при которых возможен запуск и работа.
▪️ 1. Моторное масло в картере двигателя (главная цель)
При температурах -30°C и ниже качественное всесезонное масло (5W-40) превращается в густой кисель или даже гель. При таком запуске масляный насос не может прокачать его по системе, двигатель первые секунды работает без смазки, что приводит к катастрофическому износу (задирам на вкладышах коленвала, распредвала, цилиндрах). Прогрев картера костром делает масло текучим и позволяет ему мгновенно попасть ко всем трущимся парам при запуске.
▪️2. Топливная система (особенно дизельные двигатели)
Дизельное топливо при сильных морозах парафинизируется (мутнеет, превращается в кашу). Фильтры и топливопроводы забиваются. Бензин тоже хуже испаряется, но проблема менее критична. Прогрев топливных фильтров, подводящих трубок и иногда самого топливного бака позволяет топливу снова стать текучим.
▪️3. Трансмиссионные масла (в КПП, мостах, раздаточной коробке)
Эти масла (особенно в механических КПП) еще гуще моторного. При попытке тронуться с места без прогрева можно порвать шестерни или срезать шлицы. Тягучее масло создает огромное сопротивление вращению, увеличивая нагрузку на стартер и двигатель.
▪️4. Аккумуляторная батарея (АКБ)
При -30°C эффективная емкость АКБ падает в 2 и более раза. Химические процессы в ней сильно замедляются. Она не может отдать ток, достаточный для прокрутки замерзшего мотора. Прогрев поддона (а косвенно и АКБ) увеличивает ее отдачу.
Что прогревают прежде всего? — Картер двигателя (поддон) и область вокруг топливного фильтра. Иногда направляют тепло и на КПП. Возникает вопрос: насколько опасно разогревание техники огнем? Крайне опасно, если делать это без опыта и соблюдения строгих правил. Это метод "на грани", к которому прибегают, когда другие способы (отапливаемый гараж, предпусковой подогреватель, электронный прогрев) недоступны.
Что может пойти не так?
1. Возгорание промасленной грязи и опилок на раме. Плавление и возгорание пластиковых и резиновых элементов (проводка, патрубки, шланги, сальники, антибрызговые щитки). Утечка топлива или масла из-за нагрева может привести к вспышке.
2. Перегрев и потеря прочности: Локальный нагрев ответственных металлических деталей (рычагов подвески, элементов рамы) может привести к изменению их структуры (отпуск металла) и потере прочности. Особенно опасен резкий перепад температур. Разрушение резиновых уплотнителей (сальников, сайлентблоков), что позже приведет к течам.
3. Прямая угроза взрыва — прогрев газового баллона (если машина на газовой установке). Пары бензина или скопившийся в выхлопной системе конденсат при резком нагреве могут воспламениться.
Прогрев техники открытым огнем — это архаичный, рискованный, но иногда единственно возможный в полевых условиях метод, к которому прибегают опытные механизаторы и водители. Он спасает технику от еще большего разрушения при "холодном запуске". #механика #двигатели #инженерия #физика #огонь
💡 Physics.Math.Code // @physics_lib | 13 384 |
| 10 | 17 книг Арнольда по математике.zip | 17 542 |
| 11 | 📚 17 книг Арнольда по математике
💾 Скачать книги
🎥 Посмотреть интервью с Владимиром Арнольдом:
▪️ Сложность конечных последовательностей нулей и единиц, геометрия конечных функциональных пространств — Владимир Арнольд (Смотреть)
▪️ Владимир Арнольд / Острова / Телеканал Культура (Смотреть)
▪️ Об истории обобщенных функций Владимир Арнольд (Смотреть)
▪️ Очевидное - невероятное. Математика - наука о жизни [2003] (Смотреть)
▪️ Очевидное - невероятное. Задачи Владимира Арнольда (Смотреть)
Владимир Игоревич Арнольд (1937 — 2010) — советский и российский математик, автор работ в области топологии, теории дифференциальных уравнений, теории особенностей гладких отображений и теоретической механики. Один из крупнейших математиков XX века. #math #математика #геометрия #geometry #физика #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib | 16 889 |
| 12 | ⚙️ РОТАТОРЫ НЕБА: Почему первые истребители летали с «вращающимся» двигателем?
Сегодня разберем один из самых необычных ДВС в истории — ротационный двигатель (ротатив). Не путать с роторным Ва́нкеля! Здесь цилиндры и картер вращаются вокруг неподвижного коленвала, а воздушный винт наглухо прикручен к картеру.
Пик славы — Первая мировая война. Легенды: «Сопвич Кэмел», «Фоккер Dr.I» Манфреда фон Рихтгофена, французский «Гном». Да, тот самый рычащий, гремящий мотор, который трясет всем самолетом в кино — это он и есть.
⌛ Почему именно ротатив в авиации? (И почему не рядный?)
1. Охлаждение набегающим потоком — главная причина. Цилиндры мчатся в воздухе со скоростью винта, обеспечивая равномерное и эффективное воздушное охлаждение. Для рядного ДВС того времени это была огромная проблема — задние цилиндры перегревались, требовался тяжелый и сложный жидкостный радиатор.
2. Превосходное соотношение масса/мощность. Конструкция проще, компактнее. Минимум деталей, нет маховика (его роль выполняет массивный вращающийся блок цилиндров). Для хрупких деревянно-тряпичных самолетов — идеально.
3. Плавность работы. Вращающийся блок создавал мощный гироскопический эффект, что снижало вибрации (хотя и создавало другие особенности в пилотировании).
4. Не боялся низких температур. Бензин и масло подавались прямо в картер, не замерзали в длинных трубопроводах.
❌ А что же рядный двигатель? В начале XX века он был тяжелее, сложнее в охлаждении, менее надежен в воздушных условиях. Его время пришло позже, с развитием алюминиевых сплавов, эффективных радиаторов и нагнетателей.
⚠️ Минусы, которые убили ротатив:
1. Гироскопический момент. Огромный! Вращающаяся масса в сотни килограммов делала самолет очень устойчивым в одной плоскости, но крайне сложным в маневрировании в другой. Разворот налево и направо выполнялся с разной скоростью и усилием. Для новичков — смертельно опасно.
2. Чудовищный расход масла. Система смазки — прямой продувкой! Масло подавалось в картер вместе с топливом, сгорало и выбрасывалось в атмосферу. Расход — до 1 литра на бензин. Пилоты дышали парами касторового масла, которое, простите, давало известный «слабительный эффект».
3. Ограничение по мощности и размерам. С увеличением числа оборотов и диаметра блока ротационные силы разрушали конструкцию. Предел — около 200 л.с. и 1300 об/мин. Звездообразный двигатель с неподвижными цилиндрами и нагнетателем оказался мощнее.
4. Сложное управление. Не было дросселя в привычном виде! Мощность регулировали перекрыванием подачи топлива («контроль газа»), что вело к ненадежному зажиганию. Часто на посадке мотор просто выключали.
Ротативный двигатель — это гениальное инженерное решение для конкретных технологических и исторических условий. Он дал авиации мощный толчок, но стал тупиковой ветвью, уступив место более совершенным звездообразным и рядным моторам. А как думаете, есть ли у ротативной схемы шанс на реинкарнацию в современных беспилотниках или гибридных установках? #авиация #двигатели #инженерия #историятехники #ротативныйдвигател
Подборка очень интересных учебных видео о физике работе ДВС
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⏳ Звёздообразный или радиальный двигатель
⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.
⚙️ Роторный двигатель
💥💨 Как работает двухтактный двигатель скутера
⚙️ Сравнение моторных масел
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib | 17 194 |
