Physics.Math.Code
Открыть в Telegram
VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i
Больше2025 год в цифрах

150 275
Подписчики
-1624 часа
-2057 дней
-3 17130 день
Архив постов
02:12
Видео недоступноПоказать в Telegram
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]
▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.
▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science
🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс
👨🏻💻 Видеолекции по теории поля и СТО [Часть 1]
👨🏻💻 Видеолекции по теории поля и СТО [Часть 2]
📚 3 книги по теории относительности
☀️ Физика света / The Physics of Light [2014]
💡 Physics.Math.Code // @physics_lib
Теория_относительности_на_спичках_#теорияотносительности_#наука.mp44.14 MB
00:59
Видео недоступноПоказать в Telegram
⚡️ Уравнения Максвелла ✨
К первой половине 19 века понимание электромагнетизма улучшилось благодаря многочисленным экспериментам и теоретическим работам. В 1780-х годах Шарль-Огюстен де Кулон установил свой закон электростатики. В 1825 году Андре-Мари Ампер опубликовал свой закон силы. В 1831 году Майкл Фарадей открыл электромагнитную индукцию в ходе своих экспериментов и предложил силовые линии для ее описания. В 1834 году Эмиль Ленц решил проблему направления индукции, а Франц Эрнст Нейман записал уравнение для расчета индуцированной силы при изменении магнитного потока. Однако эти экспериментальные результаты и правила были плохо организованы и иногда сбивали ученых с толку. Требовалось всеобъемлющее изложение принципов электродинамики.
Эта работа была выполнена Джеймсом К. Максвеллом на основе серии статей, опубликованных с 1850-х по 1870-е годы.
В 1850-х годах Максвелл работал в Кембриджском университете, где на него произвела впечатление концепция силовых линий Фарадея. Фарадей создал эту концепцию под впечатлением от Роджера Босковича, физика, который также повлиял на работу Максвелла. Позже, Оливер Хевисайд изучил Трактат Максвелла по электричеству и магнетизму и использовал векторное исчисление, чтобы синтезировать более 20 уравнений Максвелла в 4 узнаваемых, которые используют современные физики. Уравнения Максвелла также вдохновили Альберта Эйнштейна на разработку специальной теории относительности.
Экспериментальное доказательство уравнений Максвелла было продемонстрировано Генрихом Герцем в серии экспериментов в 1890-х годах. После этого уравнения Максвелла были полностью приняты учеными. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics
💡 Physics.Math.Code // @physics_lib
Максвелл.mp430.47 MB
❤ 64👍 37🔥 12⚡ 1🤩 1
00:59
Видео недоступноПоказать в Telegram
⚙️ Миниатюрный требушет — модель средневекового осадного орудия 🪨 Автор модели: https://t.me/kudriavskiy_tg
В основе работы требушета лежит механизм противовеса, использующий преобразование потенциальной энергии в кинетическую. Когда массивный противовес падает под действием гравитации, он приводит в движение длинный рычаг, на другом конце которого закреплена праща с метательным снарядом.
📜 Некоторые особенности физики работы требушета:
▪️ Соотношение длин плеч рычага. В классических конструкциях длина метательного плеча в 4–6 раз превышала длину плеча противовеса. Это соотношение обеспечивало оптимальный баланс между амплитудой движения противовеса и скоростью снаряда.
▪️ Размещение оси вращения. Инженеры XV века обнаружили, что небольшое смещение оси от теоретически оптимальной точки может существенно повысить эффективность машины. Это связано с изменением угловой скорости рычага во время движения — смещённая ось создаёт переменный момент силы, более эффективно передающий энергию снаряду.
▪️ Работа пращи. Во время движения рычага снаряд описывает сложную траекторию, испытывая центростремительное ускорение. В момент освобождения одного конца пращи это ускорение трансформируется в дополнительную линейную скорость снаряда.
▪️ Требушет с подвижным противовесом. В такой конструкции противовес подвешивается на шарнирах к короткому плечу рычага, что позволяет ему двигаться по собственной траектории. Это техническое решение, появившееся в XIII веке, существенно повысило эффективность машины.
#физика #механика #история #кинематика #кинетика #physics #видеоуроки #техника #science
💡 Physics.Math.Code // @physics_lib
Клип @zanfizika [720] [audiovk.com].mp46.82 MB
👍 90🔥 54❤ 25💯 6👏 1
01:02
Видео недоступноПоказать в Telegram
⚡️ Задача по электронике для наших подписчиков: Можно ли с помощью такой конструкции получить дуговой разряд или видео является фейком?
🔥 Свечение газов вблизи катушки Тесла
⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно
💽 Самые массовые HDD Seagate ST-225
💥 Лазерное скальпирование микросхемы
📕 Основы микроэлектроники [2001] Степаненко И.П.
📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.
⚡️ Ионофон
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
💡 Physics.Math.Code // @physics_lib
SaveClip_App_AQM4cqxbxxPaoGh5EqA843gno7hTUHP9WaoPv6kAxMLm21qCvSL3Oj7gDDeDqKy.mp47.67 MB
🔥 47❤ 15👍 13🙈 8⚡ 3🤯 3😭 3🤔 2
25:01
Видео недоступноПоказать в Telegram
⚙️ Потрясающий процесс производства промышленных шестерен
Производство промышленных шестерён включает несколько этапов: литьё, ковку и механическую обработку. Конкретный процесс зависит от типа шестерни, материала и желаемого уровня точности.
▪️ Литьё — процесс заливки расплавленного металла в форму, которая имеет конфигурацию требуемой детали. После затвердевания металла получается заготовка, близкая к конечному изделию.
▪️ Ковка — процесс, который формирует металлические сплавы в шестерни путём пластической деформации под высоким давлением в штампах.
▪️ Механическая обработка — процессы, которые вырезают профиль зубьев шестерни из заготовки для достижения требуемой геометрии, размеров и качества поверхности.
#физика #металл #горение #техника #наука #промышленность #science #сопромат #геометрия #механика
💡 Physics.Math.Code // @physics_lib
Mind_Blowing_Manufacturing_Process_of_INDUSTRIAL_GEARS_Start_to.mp4131.25 MB
👍 41🤯 16🔥 12😱 7🙈 5❤ 3❤🔥 2⚡ 1😢 1🆒 1
00:11
Видео недоступноПоказать в Telegram
🟢 Задача по физике [механика]
Как вы считаете, возможны ли в реальной жизни колебания, представленные на анимации, когда фиксированная точка на поверхности описывает окружность (эллипс) ? При каких условиях и каких волнах такое возможно? Есть ли какие-то особенности в характере взаимодействия между частицами на данной модели? #физика #опыты #physics #мехаемка #задачи #колебания #gif
💡 Physics.Math.Code // @physics_lib
Колебания.gif.mp43.21 KB
🤯 22❤ 15👍 10🤔 8🔥 1😭 1🙈 1
⚡️ ITCamp — всё, что нужно программисту
— Фреймворки, сервисы и нейросети, без которых не обойтись
— Гайды, шпаргалки и задачи по разным языкам и технологиям
— Разборы вопросов с собеседований от junior до senior
Подписывайся: @itcamp_tg
❤ 10👍 10🌚 4🙈 3❤🔥 1🔥 1🗿 1
📙 Задачи по математике. Начала анализа. Справочное пособие [1990] Вавилов, Мельников, Олехник, Пасиченко
Книга содержит теоретические сведения и систематизированный набор задач по началам анализа. Методическое построение справочника позволяет углубленно повторить этот раздел математики и самостоятельно подготовиться к поступлению в вуз с повышенной математической программой. Типовые задачи сопровождаются подробным разбором. Создана на основе преподавания математики на подготовительном отделении МГУ. Для поступающих в вузы и преподавателей.
📗 Задачи по математике. Алгебра. Справочное пособие [1987] Вавилов, Мельников, Олехник, Пасиченко
Настоящая книга является справочным пособием по методам решения алгебраических задач. Она создана на основе опыта преподавания математики на подготовительном отделении Московского государственного университета им. М. В. Ломоносова. Книга содержит материал по четырем темам: «Действительные числа и алгебраические выражения», «Уравнения, неравенства и системы», «Элементы комбинаторики», «Комплексные числа». В начале каждого параграфа приводятся краткие теоретические сведения, затем на примерах, в процессе решения типовых задач, иллюстрируются различные методы их решения. В целях типизации методов не всегда даны самые короткие решения; иногда излагаются несколько различных способов решения одной и той же задачи, для сравнения эффективности методов.
📘 Задачи по математике. Уравнения и неравенства. Справочное пособие. [1988] Вавилов, Мельников, Олехник, Пасиченко
Содержит справочные сведения по методам решения уравнений и неравенств с одним неизвестным: содержащих знак абсолютной величины, иррациональным, показательным и логарифмическим. Содержит задачи, предлагаемые на вступительных экзаменах. Методы иллюстрируются примерами. Тесно примыкает к справочному пособию авторов «Задачи по математике. Алгебра». Для самостоятельного повторения курса алгебры, для слушателей подготовительных отделений вузов, а также для поступающих в вузы. #олимпиады #математика #геометрия #подборка_книг #алгебра #задачи #высшая_математика #математический_анализ #math #science
💡 Physics.Math.Code // @physics_lib
📚_Задачи_по_математике_3_книги_1987_1990_В_В_Вавилов.zip26.47 MB
👍 37❤ 22😍 6🤩 2🔥 1🤝 1
Фото недоступноПоказать в Telegram
📚 Задачи по математике [3 книги] [1987 - 1990] В.В. Вавилов и др. Издательство: Наука
💾 Скачать книги
Справочные пособия для школьников старших классов и поступающих в вуз. Содержащие теоретические сведения и набор задач с разбором примеров. Справочники созданы на основе курса математики подготовительного отделения МГУ.
✒️ «В каждом отделе естествознания есть лишь столько настоящей науки, сколько в нем математики» (Метафизические основы естествознания, 1786 г.). — Иммануил Кант
#олимпиады #математика #геометрия #подборка_книг #алгебра #задачи #высшая_математика #математический_анализ
💡 Physics.Math.Code // @physics_lib
👍 31❤ 15🔥 7🥰 3🤩 1
01:01
Видео недоступноПоказать в Telegram
🔥 Свечение газов вблизи катушки Тесла
Коллекция газов для спектрального излучения: чистые образцы водорода, азота и пяти благородных инертных газов подвергаются воздействию высокочастотного импульсного поля миниатюрной катушки Тесла. Каждый газ имеет характерное напряжение пробоя и спектр излучения. Обратите внимание, что азот имеет самое высокое напряжение пробоя и светится только в непосредственной близости от катушки, где поле наиболее интенсивно, тогда как у неона и гелия самое низкое напряжение пробоя, и они начинают светиться на большем расстоянии от катушки. Цвет каждого газа обусловлен сочетанием цветов, излучаемых электронными энергетическими переходами, характерными для каждого элемента - основы спектроскопии. Трубка Криптона также демонстрирует интересные колебания с этой конкретной катушкой Теслы. #атомная_физика #химия #физика #physics #видеоуроки #электроника #gif
💡 Physics.Math.Code // @physics_lib
video_2023-01-19_06-22-39.mp43.76 MB
❤ 82🔥 39👍 18🤩 6⚡ 2
⚡️ 🔩 Анодирование деталей позволяет изменить их цвет. Эта обработка навсегда окрашивает металл без необходимости наносить краску или гальваническое покрытие.
Существует два метода анодирования:
▪️ Электрическое анодирование. Для получения единого, равномерно тонированного цвета используется постоянный ток не менее 80 вольт и от 1 до 3 ампер. Титановый кусок помещают в ванну с проводящей жидкостью, соединённой с источником питания полосой проводящего металла. Ток применяют к металлу до получения желаемого цвета. Цвет меняется в зависимости от силы тока и используемого напряжения.
▪️ Тепловое анодирование. Технология идентична электрическому анодированию, но реакция запускается не электрическим током, а теплом. Тепловое анодирование менее точно, чем электрический метод, но оно даёт более сложные результаты, например, градиенты или разноцветные эффекты. Первый шаг — полностью очистить и высушить изделие, затем происходит непосредственное обжигание металла, пока он не изменит цвет. С помощью приближения или удаления пламени можно менять цвета и создавать узоры.
Титан – современный легкий, прочный и коррозионно-стойкий конструкционный материал. Относится к переходным металлам. Он устойчив во многих средах, при комнатной температуре, на воздухе - до 550 °C. Стойкость титана обусловлена присутствием на поверхности тонкой, но плотной оксидной пленки. Толщина ее достигает 5-20 нм, что чуть больше, чем на алюминии, но на титане она гораздо прочнее. Естественная пленка на титане преимущественно состоит из рутила и анатаза. Повысить толщину и плотность естественной оксидной пленки на титане можно путем анодирования (анодного оксидирования). После анодирования можно также добиться повышения микротвердости поверхности титана, износостойкости, жаростойкости, жаропрочности, усталостной прочности и стойкости к схватыванию. После анодирования повышаются антифрикционные свойства поверхности деталей, предотвращается контактная коррозия при соприкосновении титана с алюминием, магнием, кадмиевыми и цинковыми покрытиями. Также анодная плёнка, благодаря пористой структуре, хорошо зарекомендовала себя как подслой для нанесения лакокрасочных материалов, клеев, герметиков, смазок. Высокая коррозионная стойкость в физиологической среде анодированного титана позволяет использовать данный материал для производства имплантов и протезов.
#видеоуроки #physics #физика #опыты #электродинамика #анодирование #химия #эксперименты #научные_фильмы #электролиз
💡 Physics.Math.Code // @physics_lib
Клип @enigma47_1920p.mp49.82 MB
Клип @xfaqru [360] [audiovk.com].mp42.73 MB
Анодирование [720] [audiovk.com].mp46.49 MB
Анодирование_сварочным_аппаратом.mp43.93 MB
Металл_без_краски_Что_такое_анодирование_и_как_оно_работает.mp44.34 MB
Анодирование_титана_это_электрохимический_процесс,_который_изм.mp41.28 MB
Как Анодировать Алюминий. Просто.mp442.44 MB
👍 40🔥 24❤ 12⚡ 4🤩 2😍 2👻 1🙈 1
01:02
Видео недоступноПоказать в Telegram
🔥 Сварка под слоем флюса — разновидность дуговой сварки, при которой процесс проходит в присутствии гранулированного или порошкообразного флюса. Флюс защищает зону сварки от воздействия воздуха и окисления, а также препятствует разбрызгиванию металла.
Сварочная проволока подаётся на детали через специальное устройство (горелку). Флюс, насыпанный вокруг и над местом сварки, плавится и формирует защитную ванну. По мере движения сварочной головки флюс покрывает дугу и формирует расплавленный металл. Флюс сплавляется, взаимодействует с металлом, очищает его и угнетает образование вредных газов и оксидов. После прохождения участка сварки остывший флюс в виде шлака удаляется с поверхности шва.
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.
💥 Лазерная сварка с разной формой луча
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
Клип @vestochkass [480] [audiovk.com].mp48.59 MB
👍 84🔥 33❤ 23⚡ 6🆒 3😎 3🌚 1
📘 Обучение решению задач по математике [1988] Василевский
Рассматриваются методы решения задач элементарной математики. Приводятся общие и частные алгоритмы поиска решения нестандартных уравнений и неравенств, геометрических и других задач. Описывается комплексное использование различных методов при решении задач повышенной трудности. Для студентов физико-математических факультетов педагогических институтов. Может быть использовано при проведении практикумов, спецкурсов и спецсеминаров.
📕 Методы решения задач [1974] Василевский А.Б.
Книга представляет собой учебное пособие для студентов математических специальностей педагогических институтов. В ней рассматриваются общие и частные методы решения тех математических задач, которые имеются в школьных учебниках и с которыми встречаются учащиеся на олимпиадах, конкурсных экзаменах и т. д. Новыми программами для математических факультетов пединститутов предусматривается проведение на третьем и четвертом курсах практикума по решению задач. Этот практикум состоит из четырех частей (алгебра, геометрия, тригонометрия и решение конкурсных и олимпиадных задач).
📔 Устные упражнения по геометрии [1983] Василевский А.Б.
Пособие содержит устные упражнения различной степени трудности, преимущественно нестандартные как по содержанию, так и по методам решения. Их можно использовать при изучении нового материала, при повторении основных тем, а также во внеклассной работе е учащимися VI—X классов.
📗 Методы решения геометрических задач [1974] Василевский А.Б.
Учебное пособие для математических факультетов педагогических институтов и университетов по курсам «Элементарная геометрия» и «Методика преподавания математики». В пособии рассматриваются методы решения геометрических задач, заданных проекционным чертежом, использование геометрических преобразований при решении задач на доказательство и построение, алгебраический метод решения конструктивных задач, роль развертки как средства анализа и расчета. Приводятся задачи на вычисление и построение, условия которых выражены приближенными величинами. Излагаются способы конструирования разверток пространственных фигур и их моделей.
Пособие может быть использовано также учителями средней школы.
#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus
💡 Physics.Math.Code // @physics_lib
📚Книги_по_математике_и_геометрии_от_Василевский_А_Б.zip26.09 MB
👍 60❤ 21🔥 13🤩 3
Фото недоступноПоказать в Telegram
📚 Книги по математике и геометрии от автора: Александр Борисович Василевский
💾 Скачать книги
📘 Обучение решению задач по математике [1988] Василевский
📕 Методы решения задач [1974] Василевский А.Б.
📔 Устные упражнения по геометрии [1983] Василевский А.Б.
📗 Методы решения геометрических задач [1974] Василевский А.Б.
Василевский Александр Борисович — кандидат педагогических наук (род. 1934). Некоторые работы автора:
▪️ «Обучение решению задач по математике»: учебное пособие для педагогических институтов по физико-математическим специальностям (Минск, «Вышэйшая школа», 1988);
▪️ «Устные упражнения по геометрии: 6–10-е классы»: пособие для учителя (Минск, «Народная асвета», 1983);
▪️ «Метод параллельных проекций»: пособие для учителя (Минск, «Народная асвета», 1985);
▪️ «Обратная связь на уроках математики» (Минск, МГПИ, 1979);
▪️ «Задания для внеклассной работы по математике: 9–11 кл.»: книга для учителей (Минск, «Нар. асвета», 1988);
▪️ «Упражнения по алгебре и началам анализа: книга для учителя» (Минск, «Народная асвета», 1991).
#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus
💡 Physics.Math.Code // @physics_lib
👍 34❤ 20🔥 4😍 2👻 1
18:04
Видео недоступноПоказать в Telegram
⚡️ Обучающий фильм Электрический ток [СССР]
Фильм поделён на три части:
1. Условия возникновения электрического тока (начинается с 00:21).
2. Источники электрического тока (03:22).
3. Электрический ток в металлах и электролитах (08:53).
Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны.
Некоторые этапы открытия электрического тока:
▪️ 1600 год — итальянский учёный Гальвани обнаружил, что две металлические пластины, помещённые в раствор соли, начинают двигаться друг к другу. Это явление было названо «гальваническим эффектом».
▪️ 1775 год — Алессандро Вольта создал первый электрический элемент («вольтов столб»), который состоял из двух металлических пластин, разделённых изолятором. При соединении пластин с помощью ключа учёный обнаружил, что между ними возникает электрический ток.
▪️ 1820 год — Майкл Фарадей открыл, что при пропускании электрического тока через проводник вокруг него образуется магнитное поле. Это открытие позволило разработать новые способы передачи энергии на большие расстояния, такие как телеграф и телефон.
Некоторые свойства электрического тока:
▪️ Тепловое действие — ток нагревает проводники. Это используется в электрических обогревателях и утюгах.
▪️ Магнитное действие — ток образует магнитное поле вокруг проводника, по которому течёт. Это свойство применяется в электродвигателях и генераторах.
▪️ Химическое действие — ток вызывает химические реакции, например, в процессе получения металлов из руд (электролиз).
Некоторые мифы об электрическом токе:
▪️ Чем больше напряжение, тем больше опасность — на самом деле опасна сила тока, а не напряжение.
▪️ Вода проводит электричество — чистая вода почти полностью изолятор, но грязная или набранная из колодца вода содержит множество растворённых веществ, которые проводят электричество.
▪️ Резиновые перчатки и обувь не проводят электричество — только профессиональные диэлектрические боты и перчатки, испытанные на заводе высоким напряжением, могут служить защитой от электрического тока.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Обучающий_фильм_Электрический_ток_ССС_720_audiovk_com.mp4482.53 MB
❤ 60👍 24🔥 17⚡ 10🤩 1
01:40
Видео недоступноПоказать в Telegram
🧲 С увеличением частоты вращения диска с магнитами наблюдается интересный эффект: ферромагнитная жидкость начинает вращаться в противоположную сторону. Связано это с тем, что достигается необходимое смещение фазы, когда предыдущая «пучность» жидкости (сгусток ферро-частиц) оказывается ближе к магниту, приближающемуся сзади, чем к магниту, который ушел вперед. Происходит смещение фаз, жидкость начинает вращаться в противоположную сторону. Иногда такой же эффект наблюдается оптике (Смотри Муаровые узоры).
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
🧲_Кто_сломал_физику?_Почему_магнитная_жидкость_движет.mp411.30 MB
👍 63🔥 28❤ 15🤯 4❤🔥 2😱 1
⚡️ Фигуры Лихтенберга — картины распределения искровых каналов, которые образуются на поверхности твёрдого диэлектрика при скользящем искровом разряде. Простым языком, это линии, похожие на молнии или ветви деревьев. Они появляются на многих естественных поверхностях, не пропускающих электричество — от древесины до кожи человека.
Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».
В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Клип_сообщества_СамостройNew_720_audiovk_com_1.mp410.37 MB
Фигуры Лихтенберга [720] [audiovk.com].mp425.82 MB
Фигуры_Лихтенберга_Discovery_720_audiovk_com.mp428.70 MB
фигуры Лихтенберга [360] [audiovk.com].mp414.72 MB
Фигуры Лихтенберга [480] [audiovk.com].mp41.38 MB
Клип @hobbyelectronics [720] [audiovk.com].mp46.23 MB
Фигуры_Лихтенберга_представляют_собой_у_720_audiovk_com.mp417.87 MB
Фигуры Лихтенберга [1080] [audiovk.com].mp439.98 MB
Фигуры Лихтенберга [720] [audiovk.com] (1).mp415.50 MB
👍 38❤ 23🔥 12⚡ 3🤩 1
Фото недоступноПоказать в Telegram
Сдаешь ЕГЭ в 2026 году? Тогда читай внимательно! 👨🎓
Мы — Профиматика, онлайн-школа по подготовке учеников 10 и 11 классов к успешной сдаче ЕГЭ на 90+ по математике с индивидуальным подходом к каждому.
Мы знаем, что твой путь в 11 класс начинается уже сейчас. И у тебя может быть 100500 вопросов:
🔸 Как правильно начать готовиться к ЕГЭ?
🔸 Когда это лучше делать: сейчас или можно потом?
🔸 Как выбрать вуз, куда точно возьмут?
🔸 Сколько баллов нужно набрать, чтобы пройти на бюджет?
🔸 Какие предметы выбрать, если нравится одно, а хорошо получается другое?
... и еще много других...😵💫
Мы знаем, что тебе может быть сложно!
Только 83% учеников начинают задумываться об этом осенью, и больше 50% из них теряют баллы на ЕГЭ из-за нехватки
времени на подготовку!
Мы решили тебе помочь!
🔤🔤🔤 Лови 3 БЕСПЛАТНЫХ файла, которые помогут тебе сориентироваться при подготовке к ЕГЭ 2026 по профильной математике! ✨
Переходи по ссылке, жми «начать» — и мы отправим тебе эти файлы в ЛС
https://th.link/Xz48L
🚩 Определиться с будущей профессией
🚩 Выбрать вуз мечты и предметы для подготовке к ЕГЭ
🚩Разобраться со шкалой ЕГЭ и понять, сколько баллов нужно именно тебе.
Забирай файлики скорее ⬇️
https://th.link/Xz48L
🤨 14❤ 8👍 7🗿 4🔥 1😱 1
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Что_будет,_если_бросить_магнит_в_медную_трубу_.mp423.04 MB
Copper and magnet.mp410.42 MB
Простейший_поезд_на_магнитах_из_батарейки,_магнитов_и_медного_провода.mp435.84 MB
магнит с медью.mp430.77 MB
ПАРАМАГНЕТИЗМ - медь и магнит_1280p.mp47.56 MB
Медь и магнит.mp4116.92 MB
⚡ 30👍 28🔥 20❤ 19✍ 1
00:43
Видео недоступноПоказать в Telegram
🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️
Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.
Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.
Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
🌑_Водяной_насос_без_ничего_Pumping_Water_Without_Blades_Magnetic.mp410.61 MB
